Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627650

RESUMO

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Assuntos
Acer , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Acer/genética , Acer/metabolismo , Ácidos Graxos Insaturados/metabolismo , Sementes , Metaboloma , Óleos de Plantas/metabolismo
2.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575023

RESUMO

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Assuntos
Secas , Florestas , Árvores , Árvores/fisiologia , Itália , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Mudança Climática , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental , Fraxinus/fisiologia , Fraxinus/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia
3.
Sci Total Environ ; 927: 172164, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580112

RESUMO

Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.


Assuntos
Isótopos de Carbono , Carbono , Isótopos de Nitrogênio , Nitrogênio , Solo , Árvores , Nitrogênio/metabolismo , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Carbono/metabolismo , Solo/química , Picea , Especificidade da Espécie , Abies , Acer , Raízes de Plantas/metabolismo , Fertilizantes
4.
Food Res Int ; 182: 114133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519199

RESUMO

Sugar maple leaves (SML), usually considered residue plant biomass and discarded accordingly, contain a considerable amount of phenolic antioxidants. In this study, SML phenolics were extracted employing both advanced (homogenization pretreated ultrasound-assisted extraction) and conventional (maceration) methods followed by their encapsulation by freeze drying and spray drying using a combination of maltodextrin and gum arabic as coating agents. Detailed physicochemical analyses revealed that the encapsulated microparticles had high solubility (>90 %) and encapsulation efficiency (>95 %), acceptable thermal stability with good handling properties. Phenolic compounds were completely released from microparticles during simulated gastric conditions. The microparticles influenced the bioaccessibility of more than 43 % of the phenolic fraction in the intestinal phase. The antioxidant capacity of the microparticles was preserved during storage. These findings suggest the effectiveness of the microencapsulation process for producing high quality microparticles of SML phenolic extracts and the possibility of their use in the food, nutraceutical, bio-pharmaceutical sectors.


Assuntos
Acer , Fenóis/química , Antioxidantes/química , Suplementos Nutricionais , Digestão
5.
Commun Biol ; 7(1): 248, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429358

RESUMO

Winged, autorotating seeds from the genus Acer, have been the subject of study for botanists and aerodynamicists for decades. Despite this attention and the relative simplicity of these winged seeds, there are still considerable gaps in our understanding of how samara dynamics are informed by morphological features. Additionally, questions remain regarding the robustness of their dynamics to morphological alterations such as mass change by moisture or area change by damage. We here challenge the conventional approach of using wing-loading correlations and instead demonstrate the superiority of a classical aerodynamic model. Using allometry, we determine why some species deviate from interspecific aerodynamic behavior. We alter samara mass and wing area and measure corresponding changes to descent velocity, rotation rate, and coning angle, thereby demonstrating their remarkable ability to autorotate despite significant morphological alteration. Samaras endure mass changes greater than 100% while maintaining descent velocity changes of less than 15%, and are thus robust to changes in mass by moisture or damage. Additionally, samaras withstand up to a 40% reduction in wing area before losing their ability to autorotate, with the largest wings more robust to ablation. Thus, samaras are also robust to wing damage in their environment, a fact children joyfully exploit.


Assuntos
Acer , Animais , Criança , Humanos , Sementes/anatomia & histologia , Asas de Animais/anatomia & histologia
6.
PLoS One ; 19(2): e0299573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421986

RESUMO

This work explores diverse novel soliton solutions due to fractional derivative, dispersive, and nonlinearity effects for the nonlinear time M-fractional paraxial wave equation. The advanced exp [-φ(ξ)] expansion method integrates the nonlinear M-fractional Paraxial wave equation for achieving creative solitonic and traveling wave envelopes to reconnoiter such dynamics. As a result, trigonometric and hyperbolic solutions have been found via the proposed method. Under the conditions of the constraint, fruitful solutions are gained and verified with the use of the symbolic software Maple 18. For any chosen set of the allowed parameters 3D, 2D and density plots illustrate, this inquisition achieved kink shape, the collision of kink type and rogue wave, periodic rogue wave, some distinct singular periodic soliton waves for time M-fractional Paraxial wave equation. As certain nonlinear effects cancel out dispersion effects, optical solitons typically can travel great distances without dissipating. We have constructed reasonable soliton solutions and managed the actual meaning of the acquired solutions of action by characterizing the particular advantages of the summarized parameters by the portrayal of figures and by interpreting the physical occurrences. New precise voyaging wave configurations are obtained using symbolic computation and the previously described methodologies. However, the movement role of the waves is explored, and the modulation instability analysis is used to describe the stability of waves in a dispersive fashion of the obtained solutions, confirming that all created solutions are precise and stable.


Assuntos
Acer , Frutas , Movimento , Exame Físico , Software
7.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206883

RESUMO

Sap exudation is the process whereby trees such as sugar (Acer saccharum Marsh.) and red maple (Acer rubrum L.) generate unusually high positive stem pressure in response to repeated cycles of freeze and thaw. This elevated xylem pressure permits the sap to be harvested over a period of several weeks and hence is a major factor in the viability of the maple syrup industry. The extensive literature on sap exudation documents competing hypotheses regarding the physical and biological mechanisms that drive positive pressure generation in maple, but to date, relatively little effort has been expended on devising mathematical models for the exudation process. In this paper, we utilize an existing model of Graf et al. (J Roy Soc Interface 12:20150665, 2015) that describes heat and mass transport within the multiphase gas-liquid-ice mixture in the porous xylem tissue. The model captures the inherent multiscale nature of xylem transport by including phase change and osmotic transport in wood cells on the microscale, which is coupled to heat transport through the tree stem on the macroscale. A parametric study based on simulations with synthetic temperature data identifies the model parameters that have greatest impact on stem pressure build-up. Measured daily temperature fluctuations are then used as model inputs and the resulting simulated pressures are compared directly with experimental measurements taken from mature red and sugar maple stems during the sap harvest season. The results demonstrate that our multiscale freeze-thaw model reproduces realistic exudation behavior, thereby providing novel insights into the specific physical mechanisms that dominate positive pressure generation in maple trees.


Assuntos
Acer , Acer/fisiologia , Congelamento , Transporte Biológico , Madeira , Carboidratos
8.
J Mass Spectrom ; 59(2): e5000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263874

RESUMO

This study describes a novel application for sandpaper spray ionization mass spectrometry (SPS-MS), to examine the surface of maple tree (Acer sp.) leaves. By comparing mass spectrometry fingerprints, healthy leaves from those infected with powdery mildew and Rhytisma acerinum were distinguished. Leaves were grated with sandpaper, cut into triangles, and placed before the mass spectrometer, with the addition of a methanol-formic acid solution. Multivariate statistical analysis categorized the samples into three groups. Overall, SPS-MS effectively analyzed leaves with infectious microorganisms, potentially aiding in the creation of fungal identification databanks.


Assuntos
Acer , Fungos , Bases de Dados Factuais , Espectrometria de Massas , Metanol
9.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205834

RESUMO

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Assuntos
Acer , Antineoplásicos , Doenças Desmielinizantes , Doenças Mitocondriais , Animais , Humanos , Mitofagia , Oxaliplatina/farmacologia , Peixe-Zebra/metabolismo , Qualidade de Vida , Sementes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Óleos de Plantas/farmacologia , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases
11.
Food Funct ; 15(1): 172-182, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38019191

RESUMO

Our laboratory has established a comprehensive program to investigate the phytochemical composition and nutritional/medicinal properties of phenolic-enriched maple syrup extract (MSX). Previous studies support MSX's therapeutic potential in diverse disease models, primarily through its anti-inflammatory effects. We recently demonstrated MSX's ability to regulate inflammatory signaling pathways and modulate inflammatory markers and proteins in a lipopolysaccharide (LPS)-induced peritonitis mouse model. However, MSX's immunoregulatory properties remain unknown. Herein, we investigated MSX's immunoregulatory properties for the first time using an integrated approach, combining data-dependent acquisition (DDA) and data-independent acquisition (DIA) strategies in a proteomic analysis of spleen tissue collected from the aforementioned peritonitis mouse model. Additionally, we conducted immune cell activation assays using macrophages and T lymphocytes. The DIA analysis unveiled a distinctive expression pattern involving three proteins-Krt83, Thoc2, and Vps16-which were present in both the control and MSX-treated groups but absent in the LPS-induced model group. Furthermore, proteins Ppih and Dpp9 exhibited significant reductions in the MSX-treated group. Ingenuity pathway analysis indicated that MSX may modulate several critical signaling pathways, exerting a suppressive effect on immune responses in various cell types involved in both innate and adaptive immunity. Our in vitro cell assays supported findings from the proteomics, revealing that MSX significantly reduced the levels of interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) in LPS-stimulated human macrophage cells, as well as the levels of IL-2 in anti-CD3/anti-CD28-induced Jurkat T cells. Taken together, our investigations provide evidence that MSX exerts immune regulatory effects that impact both innate and adaptive immunity, which adds to the data supporting MSX's development as a functional food.


Assuntos
Acer , Peritonite , Camundongos , Animais , Humanos , Acer/química , Lipopolissacarídeos/farmacologia , Proteômica , Fenóis/farmacologia , Imunidade Adaptativa , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Peritonite/tratamento farmacológico
12.
J Sci Food Agric ; 104(3): 1768-1776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872647

RESUMO

BACKGROUND: Food adulteration is a global concern, whether it takes place intentionally or incidentally. In Canada, maple syrup is susceptible to being adulterated with cheaper syrups such as corn, beet, cane syrups, and many more due to its high price and economic importance. RESULTS: In this study, the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was investigated to detect maple syrups adulterated with 15 different sugar syrups at different concentration levels. The spectra were collected in the range of 4000-650 cm-1 in the absorbance unit. These spectra were used to build six libraries and three models. A method that is capable of performing a qualitative library search using a similarity search, which is based on the first derivative correlation search algorithm, was developed. This method was further evaluated and proved to be able to capture adulterated and reject non-adulterated maple syrups, belonging to the color grades golden and amber maple syrups, with an accuracy of 93.9% and 92.3%, respectively. However, for the maple syrup belonging to the dark color grade, this method demonstrated low specificity of 33.3%, and for this reason it was only able to adequately detect adulterated samples from the non-adulterated ones with an accuracy of 81.4%. CONCLUSION: This simple and rapid method has strong potential for implementation in different stages of the maple syrup supply chain for early adulteration detection, particularly for golden and amber samples. Further evaluation and improvements are required for the dark color grade. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acer , Mel , Espectroscopia de Infravermelho com Transformada de Fourier , Acer/química , Âmbar , Carboidratos , Mel/análise , Contaminação de Alimentos/análise
13.
Tree Physiol ; 44(1)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38070183

RESUMO

Stomatal density, stomatal length and carbon isotope composition can all provide insights into environmental controls on photosynthesis and transpiration. Stomatal measurements can be time-consuming; it is therefore wise to consider efficient sampling schemes. Knowing the variance partitioning at different measurement levels (i.e., among stands, plots, trees, leaves and within leaves) can aid in making informed decisions around where to focus sampling effort. In this study, we explored the effects of nitrogen (N), phosphorus (P) and calcium silicate (CaSiO3) addition on stomatal density, length and carbon isotope composition (δ13C) of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton). We observed a positive but small (8%) increase in stomatal density with P addition and an increase in δ13C with N and CaSiO3 addition in sugar maple, but we did not observe effects of nutrient addition on these characteristics in yellow birch. Variability was highest within leaves and among trees for stomatal density and highest among stomata for stomatal length. To reduce variability and increase chances of detecting treatment differences in stomatal density and length, future protocols should consider pretreatment and repeated measurements of trees over time or measure more trees per plot, increase the number of leaf impressions or standardize their locations, measure more stomata per image and ensure consistent light availability.


Assuntos
Acer , Betula , Betula/fisiologia , Acer/fisiologia , Isótopos de Carbono , Árvores/fisiologia , Fertilização , Folhas de Planta/fisiologia
14.
J AOAC Int ; 107(1): 69-76, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37788065

RESUMO

BACKGROUND: Maple syrup is a sought-after commodity, and used as a condiment and a sweetener. Also, it is an active target of economically motivated adulteration (EMA), similar to other foods such as lemon juice and honey. OBJECTIVE: This study is aimed to detect low cost sugar adulteration in maple syrup via an internal standard method using malic acid through solid-phase extraction (SPE) and LC with isotope ratio mass spectrometric detection (LC-IRMS). METHODS: In this work, an optimized SPE sample preparation procedure was used for the isolation of organic acids from maple syrup. Using LC-IRMS, malic acid was separated from other organic acids and the δ13C value of malic acid was determined. Eleven maple syrup samples, domestic or imported from Canada, were evaluated for 13C/12C ratios (δ13C values) using combustion module-cavity ring down spectrometry (CM-CRDS) and compared to the δ13C values obtained from well-established elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) methods. The δ13C values of isolated malic acid analyzed by SPE-LC-IRMS were used as internal standards and compared to the δ13C values of bulk maple syrup; difference (δ13Csugars - δ13Cmalic acid) values greater than 3.6‰ are indicative of low-cost sugar adulteration. RESULTS: Overall, the results obtained from SPE-LC-IRMS provided a faster, novel analysis approach for determining low-cost sugar adulteration in maple syrup for regulatory purposes. This method also provided lower detectable limits of adulteration versus current literature reports using bulk analysis and comparable detection limits to Tremblay and co-workers who utilized an internal standard method. CONCLUSION: SPE-LC-IRMS is a robust method that can be used for detecting adulteration in maple syrup samples for regulatory purposes. HIGHLIGHTS: SPE-LC-IRMS is a faster, novel analysis approach for determining C4 adulteration in maple syrup with lower detection limits.


Assuntos
Acer , Humanos , Acer/química , Isótopos de Carbono , Espectrometria de Massas/métodos , Açúcares
15.
Carbohydr Polym ; 326: 121590, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142089

RESUMO

The utilization of biomass waste has attracted much interest, but such attention hasn't been paid to the abundant fallen maple leaves in Canada. Herein, we aim to obtain cellulose nanocrystals (CNCs) from maple leaves and explore their potential applications as sustainable stabilizers of Pickering emulsions for the preservation of food products with complicated structures. The results reveal that two types of CNCs were extracted from maple leaves at different alkaline conditions. Octenyl succinic anhydride was selected to modify rod-like CNCs, and the CNC-stabilized oil-in-water Pickering emulsions showed excellent stability. Cinnamaldehyde, a model antibacterial compound, was incorporated in the Pickering emulsions, which exhibited the improved storage stability and sustained antibacterial capacity towards both Gram-positive and Gram-negative bacteria. Shrimp was chosen as an example that has complicated surface structure and is hard to disinfect, and the CNC-stabilized Pickering emulsions could be easily sprayed on the surface of shrimp to inhibit the proliferation of bacteria and inactivate the psychrophilic bacteria responsible for shrimp spoilage at refrigerated condition, so as to preserve the quality of shrimp. Therefore, the current work suggests the possibility to utilize fallen maple leaves as a promising source of CNCs and the applications of CNC-stabilized Pickering emulsions in seafood preservation.


Assuntos
Acer , Nanopartículas , Emulsões/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Celulose/química , Alimentos Marinhos , Nanopartículas/química
16.
Plant Sci ; 338: 111917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944703

RESUMO

Acer truncatum is a horticultural tree species with individuals that display either yellow or red leaves in autumn, giving it high ornamental and economic value. 'Lihong' of A. truncatum is an excellent cultivar due to its characteristic of having autumn leaves that turn a bright and beautiful shade of red, while its closely related cultivar 'Bunge' does not. However, the molecular mechanism underlying the color change in the cultivar 'Lihong' is still unclear. Here, we assembled a high-quality genome sequence of Acer truncatum 'Lihong' (genome size = 688 Mb, scaffold N50 = 9.14 Mb) with 28,438 protein-coding genes predicted. Through comparative genomic analysis, we found that 'Lihong' had experienced more tandem duplication events although it's a high degree of collinearity with 'Bunge'. Especially, the expansion of key enzymes in the anthocyanin synthesis pathway was significantly uneven between the two varieties, with 'Lihong' genome containing a significantly higher number of tandem/dispersed duplication key genes. Further transcriptomic, metabolomic, and molecular functional analyses demonstrated that several UFGT genes, mainly resulting from tandem/dispersed duplication, followed by the promoter sequence variation, may contribute greatly to the leaf color phenotype, which provides new insights into the mechanism of divergent anthocyanin accumulation process in the 'Lihong' and 'Bunge' with yellow leaves in autumn. Further, constitutive expression of two UFGT genes, which showed higher expression in 'Lihong', elevated the anthocyanin content. We proposed that the small-scale duplication events could contribute to phenotype innovation.


Assuntos
Acer , Humanos , Acer/genética , Acer/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Cor
17.
Environ Monit Assess ; 196(1): 46, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102315

RESUMO

This study investigated the effects of heavy metals and drought on tree drying in three maple species located in the Kastamonu Campus in northwestern Türkiye. Soil samples were taken from 0-30 cm depth under maple species, and some soil properties were analyzed. The standardized precipitation evapotranspiration index was calculated for the drought impression using 71 years of climate data. The severe drought has had its effect (1.516) since August 2020. There was an extreme drought in January and February 2021 (-2.032 and -2.076, respectively), and this drought effect lasted until August as a severe drought. Chromium concentration at maple species was almost twice higher than the Maximum Allowable Limit for Türkiye (> 100 mg kg-1). The highest nickel concentration was found under Acer pseudoplatanus (97.25 mg kg-1) and Acer negundo (108.13 mg kg-1). The sampling sites were nonsignificant for copper (p = 0.806), lead (p = 0.916), and zinc (p = 0.866) heavy metals. Phyllosticta minima and Phyllactinia marissallii were detected in maple trees. In conclusion, it is understood that drought and heavy metal accumulation (chromium, nickel) in the soil affect tree drying. Physiological drought was first seen in trees due to the lack of rainfall in 2020. Soils were contaminated with heavy metals, and finally, diseases were seen. These results show that adverse climate events due to global climate change will have a negative impact on the growth and development of maple species, as their severity is expected to increase in the next few years.


Assuntos
Acer , Metais Pesados , Humanos , Solo , Níquel , Secas , Turquia , Universidades , Monitoramento Ambiental , Metais Pesados/análise , Árvores/fisiologia , Cromo
18.
BMC Med ; 21(1): 445, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974189

RESUMO

BACKGROUND: Acquired brain injury (ABI) is linked to increased depression risk. Existing therapies for depression in ABI (e.g., cognitive behavioural therapy) have mixed efficacy. Behavioural activation (BA), an intervention that encourages engaging in positively reinforcing activities, shows promise. The primary aims were to assess feasibility, acceptability, and potential efficacy of two 8-week BA groups. METHODS: Adults (≥ 18 years) recruited from local ABI services, charities, and self-referral via social media were randomised to condition. The Activity Planning group (AP; "traditional" BA) trained participants to plan reinforcing activities over 8 weeks. The Activity Engagement group (AE; "experiential" BA) encouraged engagement in positive activities within session only. Both BA groups were compared to an 8-week Waitlist group (WL). The primary outcomes, feasibility and acceptability, were assessed via recruitment, retention, attendance, and qualitative feedback on groups. The secondary outcome, potential efficacy, was assessed via blinded assessments of self-reported activity levels, depression, and anxiety (at pre- and post-intervention and 1 month follow-up) and were compared across trial arms. Data were collected in-person and remotely due to COVID-19. RESULTS: N = 60 participants were randomised to AP (randomised n = 22; total n = 29), AE (randomised n = 22; total n = 28), or re-randomised following WL (total n = 16). Whether in-person or remote, AP and AE were rated as similarly enjoyable and helpful. In exploring efficacy, 58.33% of AP members had clinically meaningful activity level improvements, relative to 50% AE and 38.5% WL. Both AP and AE groups had depression reductions relative to WL, but only AP participants demonstrated anxiety reductions relative to AE and WL. AP participants noted benefits of learning strategies to increase activities and learning from other group members. AE participants valued social discussion and choice in selecting in-session activities. CONCLUSIONS: Both in-person and remote group BA were feasible and acceptable in ABI. Though both traditional and experiential BA may be effective, these may have different mechanisms. TRIAL REGISTRATION: Clinicaltrials.gov, NCT03874650. Protocol version 2.3, May 26 2020.


Assuntos
Acer , Lesões Encefálicas , Terapia Cognitivo-Comportamental , Adulto , Humanos , Lesões Encefálicas/terapia , Terapia Cognitivo-Comportamental/métodos , Estudos de Viabilidade , Satisfação Pessoal , Projetos Piloto
19.
Sci Rep ; 13(1): 19818, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963893

RESUMO

Determining the natural range of Acer pseudoplatanus and the future directions of its spread is not clear. Modern technological achievements, including tools related to remote sensing, provide new opportunities to assess the degree of spread and adaptation of species to a changing climate. The aim of the work was to demonstrate the possibility of using NDVI to assess the habitat conditions of sycamore in Poland and the possibility of its natural expansion. The data analysis was divided into 2 parts. The first covered the characteristics of all sycamore stands occurring in Poland. In the second part, the analysis of sycamore stands using NDVI was made. The results of the study show that the highest average NDVI values are found in sycamore stands in the northern part of Poland, which has so far been considered less favorable for sycamore. This may suggest the potential for an increase in the share of sycamore towards the north. The results also confirm the forecasts given in the literature regarding the spread of sycamore towards Lithuania, Latvia and Estonia. The results also point to Denmark and the western part of the British Isles as potentially favorable habitats for sycamore.


Assuntos
Acer , Estônia , Letônia , Lituânia , Polônia
20.
Commun Biol ; 6(1): 1001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783835

RESUMO

Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.


Assuntos
Acer , Hipóxia-Isquemia Encefálica , Ratos , Animais , Neuroproteção , Altitude , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/complicações , Multiômica , Extratos Vegetais/farmacologia , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...